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Answers to Exam - Solid State Physics 

Wednesday, 2nd November 2016, 09:00 – 12:00 
 

This is a closed-book exam. You are not allowed to bring books, notes etc. You can use a 

basic or scientific calculator, but no other electronic equipment with capabilities to display or 

pronounce the course content.  

Do not forget to indicate your full name and student number on each sheet. Please write in a 

clear way! 

There are 5 problems with total points of 100. 

 

 

 

 

 

 

 

 

 

 

 

1) Crystal structure (15 points). 

 

a. In graphene carbon atoms form a honeycomb lattice as shown in figure 1, 

however it is not a Bravais lattice. Find the corresponding Bravais lattice for 

graphene. Draw the basis and primitive lattice vectors. (8 pt.) 

b. Structure of graphite can be considered as graphene layers stacked together, as 

shown in figure 2. What is corresponding Bravais lattice? Give your argument.  

(4 pt.) 

c. How many carbon atoms are there in the primitive cell of graphite? (3 pt.) 
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Figure 1      Figure 2 

a. Primitive lattice vectors are 𝒂𝟏 and 𝒂𝟐 respectively. Basis consists of two carbon 

atoms (sublattice A and sublattice B denoted by red and blue colors). Each 

sublattice forms hexagonal lattice. Bravais lattice for graphene is hexagonal 

lattice.  

b. Hexagonal (NOT HCP, since the atom in the middle of the hexagonal structure is 

missing). 

c. The unit cell of graphite can be chosen as in the picture. In the upper or lower 

layer we have 
1

2
(1 + 2 ∙

1

6
+ 2 ∙

1

3
) = 1 atom. In the middle plane we have 

(1 + 2 ∙
1

6
+ 2 ∙

1

3
) = 2 atoms so in total 4 atoms. 
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2) X-Ray diffraction in crystals (20 points). 

There exist hollow molecules entirely made of carbon atoms, the most famous one is 

   , a molecule made of    carbon atoms arranged in the form of a icosahedron: 

that is,     has roughly the shape of a sphere.     molecules crystallize in an FCC 

lattice of charge-neutral molecules with cubic lattice constant   =  14 11  . 

a. What kind of cohesive forces keep the molecules together in this crystal? (2 pt.) 

b. We know from experiment that in a     molecule the distance from the carbon 

nuclei to the center of the molecule is   =       . Assume that     electrons are 

uniformly distributed on the surface of     molecule, such that the electron 

density can be written as      =          –    , where the   is a delta function. 

Determine the constant  . (5 pt.) 

c. Determine the atomic form factor    as a function of the reciprocal lattice vector 

 . (5 pt.) 

d. Calculate the Structure Factor for the  2      and  1 1 1  planes. Explain from 

your result why, experimentally, the  2      X-ray diffraction peak is much 

weaker (~5%) compared to the  1 1 1  peak. (8 pt.) 

Hint: Structure factor for FCC lattice is 

  =    (1 +          +          +         ) 

Atomic form factor is  

  = 4 ∫   ∙     ∙  2 ∙
     ∙   

 ∙  
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Solution 

 

a. The lattice consists of neutral atoms, so there are no ionic bonds between 

atoms, neither covalent bonds. The cohesive force is van der Waals force. 

b. There are     electrons spread over an area of the shell 4  2  =  1 4  2. 

This gives a density of  = 2  4 electrons   2,  

    =
 

    , so  =
36 

   3     
 2     2 , or using the electron charge, 

 =       1  1      2.  

c.  

  = 4 ∫  ∙     ∙  2 ∙
     ∙   

 ∙  
=  ∙ 4 ∫  ∙         ∙  2 ∙

     ∙   

 ∙  

=  ∙ 4  2
       

  
 

Here we used definition of   function 

∫           = [
            [   ]

               [   ]

 

 

 

d. It easy to note that plane  2      has all even and plane  1 1 1  has all odd 

indexes. Then the structure factor for those planes are 4 , where   is an 

atomic form factor. Thus the ratio between diffraction peak intensities would 

be  

(
 2  

 111
)
2

 

 

This ratio can be evaluated by using the result of previous problem and having: 

For  2     ,   =  2    1  =  2  2    =         1 

For  1 1 1 ,   =  √  2    =         1 

(
 2  

 111
)
2

= (
        ∙     ∙     

        ∙     ∙     
)

2

= (
   2

    
)
2

       

The calculation shows that the  2      peak should be very weak  in the 

diffraction spectrum. 
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3) Thermal properties of metal (20 points). 

 

a. Calculate 3D density of states 𝐷 𝜔  for phonons in a cubic crystal with size 

 𝐿 × 𝐿 × 𝐿. Use Debye approximation for dispersion relation 𝜔 = 𝑣𝑘. (6 pt.) 

 

b. Calculate the number of phonons  𝑝  in this crystal. Show its dependence on 

temperature 𝑇 in the two limiting cases: when 𝑘𝐵𝑇 ≫ ℏ𝜔 and when 𝑘𝐵𝑇 ≪ ℏ𝜔.  

(6 pt.) 

 

c. Thermal conductivity coefficient in metal is given by 𝑘  𝑘𝑒 =
1

3
 𝑒𝑣𝑙 =

    𝐵
 

3𝑚
𝜏𝑇 . 

Here electron scattering rate mainly due to interaction with phonons or impurities: 

1

𝜏
=

1

𝜏𝑝ℎ
+

1

𝜏𝑖
+ ⋯. Sketch 𝑘 as a function of 𝑇. (4 pt.) 

d. Also discuss and sketch how electrical conductivity in metal depends on 

temperature 𝑇. (4 pt.) 
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Solution 

 

a. Density of states of phonons can be calculated using 

𝐷 𝜔 =
𝜕𝑁

𝜕𝑘
∙
𝜕𝑘

𝜕𝜔
 

where 
𝜕𝑁

𝜕𝑘
=

𝐿3

 2  3
4 𝑘2 is the number of states in the interval 𝑘 → 𝑘 + Δk in 3D 

space. 

Using dispersion relation of acoustic wave for small 𝑘’s 𝜔 = 𝑣𝑘 we can find that 

𝜕𝑘

𝜕𝜔
=

1

𝑣
 and  

𝐷 𝜔 =
𝐿 

 2   
4 

𝜔2

𝑣 
 

b.  𝑝 = ∫ 𝐷 𝜔 〈  𝜔 〉 𝜔
𝜔𝐷

 
, where 𝜔𝐷 is Debye frequency. 

 𝑝 =
𝐿 

2 2𝑣 
∫

𝜔2

  𝑝 (
ℏ𝜔
𝑘𝐵𝑇

) 1
 𝜔

𝜔𝐷

 
 

In case 𝑘𝐵𝑇 ≫ ℏ𝜔 we can use Taylor expansion of the exponent in denominator 

 𝑝 =
𝐿 

2 2𝑣 
∫

𝜔2

1 +
ℏ𝜔
𝑘𝐵𝑇

 1
 𝜔

𝜔𝐷

 
=

𝐿 𝑘𝐵𝜔𝐷
2

4 2𝑣 ℏ
∙ 𝑇 

Which means that number of phonons is linearly proportional to the temperature 

when 𝑘𝐵𝑇 ≫ ℏ𝜔. 

In case of 𝑘𝐵𝑇 ≪ ℏ𝜔 we can get 

 𝑝 =
𝐿3

2 2𝑣3
∙ (

𝑘𝐵𝑇

ℏ
)
2

∫
(
ℏ𝜔
𝑘𝐵𝑇

)
2

  𝑝 (
ℏ𝜔
𝑘𝐵𝑇

)  1
 𝜔

𝜔𝐷

 

 

here we can change the variables in the following way  

ℏ𝜔

𝑘𝐵𝑇
=   

 𝜔 =
𝑘𝐵𝑇

ℏ
   

∫  𝜔 → ∫   
 𝐷

 

𝜔𝐷
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Than we can get such an integral 

 𝑝 =
𝐿3

2 2𝑣3
∙ (

𝑘𝐵𝑇

ℏ
)
3

∫
 2

  𝑝    1
  

 𝐷

 

 

𝑘𝐵𝑇 ≪ ℏ𝜔 means that  ≫ 1 and integral can be simplified to the form of gamma 

function    + 1 = ∫        
 

 
 

 𝑝 =
𝐿3

2 2𝑣3
∙ (

𝑘𝐵𝑇

ℏ
)
3

∫  2  𝑝      
 𝐷

 

=
𝐿3

2 2𝑣3
∙ (

𝑘𝐵

ℏ
)
3

    ∙ 𝑇3 

Here we assumed that 𝜔𝐷  𝐷 →  . Thus, number of phonons is proportional to 𝑇3 at 

low temperatures. 

 

 

 

c. Since 𝑘𝑒 =
    𝐵

 

3𝑚
𝜏𝑇 we can use the fact that scattering rate of electrons with 

phonons is proportional to the number of phonons in the system 
1

𝜏𝑝ℎ
∝  𝑝  

Thus, we can distinguish several temperature regions: 

1. High temperatures, where  𝑝 ∝ 𝑇 → 𝑘𝑒 =  𝑜  𝑡 

2. Intermediate regime,  𝑝 ∝ 𝑇3 → 𝑘𝑒 ∝
1

𝑇  In this two regimes scattering with 

phonons is a dominant process 

3. Low temperature regime, when number of phonons becomes small, scattering 

is mainly due to impurities. One can note that number of impurities is a fixed 

number 
1

𝜏𝑖
=  𝑜  𝑡 → 𝜏 =  𝑜  𝑡 → 𝑘𝑒 ∝ 𝑇 
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d. Noting that 𝜎 =
 𝑒 

𝑚∗ ∙ 𝜏 we can use similar logic as in c. to find that at 

1. High temperatures 𝜎 ∝
1

𝑇
 

2. Intermediate regime 𝜎 ∝
1

𝑇3 

3. Low temperature 𝜎 =  𝑜  𝑡 
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4) Hall effect (25 points). 

 

a. Consider a specimen (see figure) in a longitudinal electric field 𝐸  and a transverse 

magnetic field 𝐵 = 𝐵𝑧. Write down equations of motion of electrons in this 

specimen, and find steady state solutions for electron velocities in all three 

dimensions. (6 pt.) 

b. The Hall coefficient is defined by  𝐻 =
𝐸𝑦

 𝑥𝐵
, derive the expression for  𝐻 as a 

function of electron concentration  . (8 pt.) 

c. Now assume there are two types of carriers in this specimen, electrons and holes, 

like in the case of a semiconductor material. Show  𝐻 =
1

𝑒
∙

𝑝    

 𝑝     
, where   is 

electron concentration, 𝑝 is hole concentration, and  =
𝜇𝑒

𝜇ℎ
 is the electron-hole 

mobility ratio. (8 pt.) 

d. What do you expect the  𝐻 will be for a material where 𝑚𝑒 = 𝑚  and 𝑝 =  ?  

(3 pt.) 
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Solution 

 

a. Electron in electric field 𝑬 and magnetic field 𝑩 experience a Lorentz force 

𝑭 =    𝑬 + 𝒗 × 𝑩  in SI units. The static magnetic field B lie along the z axis. 

Than the component equations of motion are  

𝑚(
 

 𝑡
+

1

𝜏
) 𝑣 =   (𝐸 + 𝐵𝑣 )  

𝑚(
 

 𝑡
+

1

𝜏
) 𝑣 =   (𝐸  𝐵𝑣 )  

𝑚(
 

 𝑡
+

1

𝜏
) 𝑣𝑧 =   𝐸𝑧  

In the steady state in a static electric field the time derivatives are zero, so that 

the drift velocity is  

𝑣 =  
 𝜏

𝑚
𝐸  𝜔 𝜏𝑣  

𝑣 =  
 𝜏

𝑚
𝐸 + 𝜔 𝜏𝑣  

𝑣𝑧 =  
 𝜏

𝑚
𝐸𝑧 

Where 𝜔 =  𝐵 𝑚 is the cyclotron frequency. 

 

b. The quantity defined by  𝐻 =
𝐸𝑦

 𝑥𝐵
, where 𝑗 =    𝑣 =   2𝜏𝐸  𝑚. (Note that the 

second term is omitted, movement in 𝑦 direction doesn’t influence   component 

of electron velocity, its driven by electric field only, so-called drift velocity 

approximation). Than  

 𝐻 =  

 𝐵𝜏𝐸 
𝑚

  2𝜏𝐵𝐸 
𝑚

=  
1

  
 

c. In analogous way we can write the equations of motion for electrons and holes in 

magnetic field and find components of velocity 
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For electrons     For holes 

𝑣 =  
𝑒𝜏

𝑚
𝐸  𝜔 𝜏𝑣      𝑣 =

𝑒𝜏

𝑚
𝐸 + 𝜔 𝜏𝑣   

𝑣 =  
𝑒𝜏

𝑚
𝐸 + 𝜔 𝜏𝑣      𝑣 =

𝑒𝜏

𝑚
𝐸  𝜔 𝜏𝑣   

𝑣𝑧 =  
𝑒𝜏

𝑚
𝐸𝑧      𝑣𝑧 =

𝑒𝜏

𝑚
𝐸𝑧  

Assumption was made that   component of velocity is not influenced by 𝑦 movement 

of charge, it is driven only by electric field. Thus, the total contribution to   

component of current density is  

𝑗 = 𝑗 
𝑒 + 𝑗 

 =    𝜇𝑒 + 𝑝 𝜇  𝐸  

Similarly we can find an expression for 𝑦 component of current density for both types 

of carriers as 

𝑗 
𝑒 =    𝜇𝑒(𝐸 + 𝜇𝑒𝐵𝐸 ) for electrons 

𝑗 
 = 𝑝 𝜇 (𝐸  𝜇 𝐵𝐸 ) for holes 

Using 𝑗 = 𝑗 
𝑒 + 𝑗 

 =   we can derive that 

𝐸 = 𝐸 𝐵
𝑝𝜇 

2   𝜇𝑒
2

𝑝𝜇 +  𝜇𝑒
                 

Than 

 𝐻 =
𝐸 

𝑗 𝐵
=

1

 
∙

𝑝    2

 𝑝 +    2
               

Where  =
𝜇𝑒

𝜇ℎ
 

  

d.  𝐻 expected to be 0, this can happen in fully compensated semimetal where both 

carrier concentrations are the same. 
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5) Semiconductor and superconductor properties (20 points). 

 

a. Describe the difference between insulator, semiconductor, semimetal and metal. 

(4 pt.) 

 

b. 𝑝    junction (10 pt.) 

i. Explain the concept of p and n type semiconductors,  

ii. Draw the schematic energy diagram.  

iii. What will happen on the interface if you now bring them in contact?  

iv. Draw the energy levels at the interface before and after diffusive equilibrium 

is established.  

v. Based on the energy diagram explain how a solar cell works. 

 

c. Qualitatively explain the physical phenomena shown on the picture below. (6 pt.) 
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Solution 

 

a. See Kittel 8th ed. P. 162. Fig. 1 

 

b. i) n and p are electron/hole doped semiconductors with Fermi level shifted 

towards the conduction/valence band. 

ii) Corresponding energy diagram of p and n semiconductors: 

 

        

iii) Fermi levels on both sides will be alliged at the interface. Build-in electric 

field will be established opposite to the charge movement. It will decay if 
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one moves away from the interface.  

iv) Before equilibrium: 

 

After equilibrium is established: 

 

v) If the p-n junction is illuminated by light with frequency larger than the 

bandgap of semiconductor electron-hole (exciton) pair will be generated within 

the depletion region. Later it can be broken and driven by build-in electric field.  
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Voltage will be generated on the two end of junction. Typical     characteristic 

of solar cell integrated into a simple circuit under light illumination is shown on 

the picture. 

 

Without light it recovers typical 𝑝    junction     characteristic.  

c. The phenomena shown on the picture is Meissner effect. When a 

superconductor is cooled down below its critical temperature in applied 

magnetic field the magnetic flux originally present in the material will be 

ejected. In this way position of superconductor can be “locked” in space by 

magnetic field. In some extreme cases when superconductor can withstand 

large magnetic field it becomes possible to carry extra weight. This is an 

example of perfect diamagnetism.  

 

 


